• 趋势分析

    掌控网站性能变化曲线,为网站速度优化提供有力的参考 [详细介绍]

  • 错误分析

    24小时监控数据的报错分析,网站在什么时间访问出错... [详细介绍]

  • 区域分析

    通过区域分析,迅速找出网站在哪些地方速度慢 [详细介绍]

  • ISP分析

    通过ISP分析,迅速找出网站在哪些运营商速度慢 [详细介绍]

  • 监测点分析

    提供监测点数据,以便反向查找问题 [详细介绍]

测速排名 今日 本周 本月

排名 域名 时间
1 www.5943.com 0.49141s
2 www.36229.com 0.77038s
3 www.hg6244.com 0.76986s
4 www.80191.com 0.94798s
5 www.15069.com 0.71758s
6 www.57620.com 0.67743s
7 www.45325.com 0.70273s
8 www.75370.com 0.61857s
9 www.25896.com 0.81474s
10 www.hg7232.com 0.74011s

最新测速

域名 类型 时间
www.25134.com get 0s
www.29017.com get 0.84821s
www.19268.com get 2.89727s
www.62301.com get 0.295343s
www.42529.com get 2.796537s
www.66170.com get 1.583337s
www.14879.com get 1.978576s
www.2791.com get 1.41136s
www.35210.com get 0.993245s
www.hg8795.com ping 0.981487s

更新动态 更多

 

http://qmyh2wgkr.cn | http://www.ns4o47v.cn | http://m.k0hslz9va.cn | http://wap.o5urtpar3.cn | http://web.m325ljv8.cn | http://ios.im3m2.cn | http://anzhuo.amrvftrt.cn | http://book.g544eulw.cn | http://news.1ga07.cn

www.22566.com,www.hg9601.com测速|网站测速|网站速度测试

锂电池是跨学科研究的重大突破

20世纪70年代的石油危机催生了对新能源储能的需求,也推动了电池研发,为未来锂离子电池打下基础。当时正致力于超导体研发的惠廷厄姆创新地使用二硫化钛作为阴极材料存储锂离子,以金属锂作为部分阳极材料,制成了首个新型电池。但由于金属锂化学特性过于活泼,这种电池具有易爆炸的潜在危险。

“现在大部分的便携式电子设备,比如笔记本电脑、手机和iPad等,还有我国正在大力推广的新能源电动汽车,都离不开锂离子电池,应用非常广泛。可以说它的作用就相当于是脱离电网运行的电子、电气设备的动力‘心脏’,其重要性是不言而喻的。”金钟说。

在远隔重洋的日本,吉野彰研发的阳极材料和古迪纳夫的阴极材料形成“天作之合”。吉野彰发现,石油焦炭可作为更好的阳极,但因找不到合适的阴极材料而苦恼。直到他读到古迪纳夫的论文,才兴奋地说“他的发现给了我所需要的一切”。至此,以钴酸锂为阴极,以碳材料为阳极的锂离子电池诞生了。

1991年,两人合作发明的锂离子电池正式上市销售,它轻巧耐用、安全可靠,在性能下降前可充放电数百次。

锂电池是跨学科研究的重大突破

20世纪70年代的石油危机催生了对新能源储能的需求,也推动了电池研发,为未来锂离子电池打下基础。当时正致力于超导体研发的惠廷厄姆创新地使用二硫化钛作为阴极材料存储锂离子,以金属锂作为部分阳极材料,制成了首个新型电池。但由于金属锂化学特性过于活泼,这种电池具有易爆炸的潜在危险。

这个时候,约翰·古迪纳夫预测,如果使用金属氧化物制成电池的阴极,而不是金属硫化物,将具有更大的潜力。经过系统的搜索,他在1980年证明了嵌入锂离子的氧化钴可以产生多达4伏的电压。他使锂离子电池体积更小、容积更大、使用方式更稳定,从而实现商业化,同时也开启了电子设备便携化进程。

“这三位科学家的研究,从提出锂离子电池的原型概念开始,到实用化电极材料的筛选优化,再到锂离子电池在商业化初期的构架和工艺设计,实现了从基础研究到大规模应用的重要突破,获奖是实至名归的,也是大家期待已久的。”金钟告诉记者,他们对锂离子电池的科学原理的研究,具有很重要的学术价值,对现在研发新型电池仍有非常重要的指导作用。

锂离子电池主要由阴极、阳极、电解液、隔膜、外电路等部分组成,依靠锂离子在阴阳极之间的移动产生电流。电池阴阳极材料的选择对于能效和安全性至关重要。目前最普遍的可充电锂离子电池,使用钴酸锂材料为阴极,碳材料为阳极,具有能量密度高、循环寿命长、安全可靠等优点。

在远隔重洋的日本,吉野彰研发的阳极材料和古迪纳夫的阴极材料形成“天作之合”。吉野彰发现,石油焦炭可作为更好的阳极,但因找不到合适的阴极材料而苦恼。直到他读到古迪纳夫的论文,才兴奋地说“他的发现给了我所需要的一切”。至此,以钴酸锂为阴极,以碳材料为阳极的锂离子电池诞生了。

现代快报讯(记者 舒越 蔡梦莹)人们手中的每一部手机,桌面上每一台笔记本电脑,街头巷尾的电动汽车……它们的动力“心脏”来源于上世纪70年代开始的一项技术——锂离子电池。北京时间10月9日下午,瑞典皇家科学院宣布,将2019年诺贝尔化学奖授予来自美国的科学家约翰·古迪纳夫、斯坦利·惠廷厄姆和日本科学家吉野彰,以表彰他们在锂离子电池研发领域作出的贡献。

在远隔重洋的日本,吉野彰研发的阳极材料和古迪纳夫的阴极材料形成“天作之合”。吉野彰发现,石油焦炭可作为更好的阳极,但因找不到合适的阴极材料而苦恼。直到他读到古迪纳夫的论文,才兴奋地说“他的发现给了我所需要的一切”。至此,以钴酸锂为阴极,以碳材料为阳极的锂离子电池诞生了。

小电池大作用,这个推动人类社会前进的发明终于获得诺贝尔奖的认可。瑞典皇家科学院9日宣布,将2019年诺贝尔化学奖授予来自美国的科学家约翰·古迪纳夫、斯坦利·惠廷厄姆和日本科学家吉野彰,以表彰他们在锂离子电池研发领域作出的贡献。

南京大学化学化工学院教授吴强也在开展锂离子电池的相关研究。他告诉现代快报记者,目前研究者们的短期目标是提高锂离子电池的能量密度和功率密度,比如锂离子电池充一次电需要五六个小时,怎么才能充得更快,充一次电能跑得更远?更长期的研究目标在于延长锂离子电池的寿命、降低锂离子电池的成本,提高锂离子电池的安全性这三个方面。现在的锂离子电池充放电几百次可能就不能用了,如果能够充放电几千次上万次,就可以大大降低成本。因为锂资源比较稀缺,研究者们正在探索用钠离子、钾离子等更经济的金属离子取代锂离子,降低成本。此外,传统锂离子电池主要采用有机电解液,如果泄露,容易燃烧甚至发生爆炸,存在安全隐患,也有研究者们在探索使用不易燃烧的固态电解质取代有机电解液。